Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
In robot inertial navigation systems, to deal with the problems of drift and noise in the gyroscope and accelerometer and the high computational cost when using extended Kalman filter (EKF) and particle filter (PF), a complementary filtering algorithm is utilized. By combining the Inertial Measurement Unit (IMU) multi-sensor signals, the attitude data are corrected, and the highprecision attitude angles are obtained. In this paper, the quaternion algorithm is used to describe the attitude motion, and the process of attitude estimation is analyzed in detail. Moreover, the models of the sensor and system are given. Ultimately, the attitude angles are estimated by using the quaternion extended Kalman filter, linear complementary filter, and Mahony complementary filter, respectively. The experimental results show that the Mahony complementary filtering algorithm has less computational cost than the extended Kalman filtering algorithm, while the attitude estimation accuracy of these two algorithms is similar, which reveals that Mahony complementary filtering is more suitable for low-cost embedded systems....
When designing rehabilitation robots, there remains the challenge of ensuring the comfort and safety of users, especially for wearable rehabilitation robots that interact with human limbs. In this paper, we present a kineto-static analysis of the 3-RPS parallel wrist rehabilitation robot, taking into account the soft characteristics of the human limb and its kinematic mobility. First, the human upper-limb model was made to estimate the interaction force and moment through inverse kinematic analysis. Second, a static analysis was conducted to obtain the force and moment acting on the human limb, which is directly related to the user’s comfort and safety. Then, the design parameters of the 3-RPS robot were obtained by generic optimization through kineto-static analysis. Finally, the influence of the parasitic motion of the 3-RPS robot and the initial offset between the wrist center and the robot moving platform were discussed. Through the analysis results, we provide effective solutions to ensure the safety and comfort of the user....
Reactive algorithm in an unknown environment is very useful to deal with dynamic obstacles that may change unexpectantly and quickly because the workspace is dynamic in real-life applications, and this work is focusing on the dynamic and unknown environment by online updating data in each step toward a specific goal; sensing and avoiding the obstacles coming across its way toward the target by training to take the corrective action for every possible offset is one of the most challenging problems in the field of robotics. 'is problem is solved by proposing an Artificial Intelligence System (AIS), which works on the behaviour of Intelligent Autonomous Vehicles (IAVs) like humans in recognition, learning, decision making, and action. First, the use of the AIS and some navigation methods based on Artificial Neural Networks (ANNs) to training datasets provided high Mean Square Error (MSE) from training on MATLAB Simulink tool. Standardization techniques were used to improve the performance of results from the training network on MATLAB Simulink. When it comes to knowledge-based systems, ANNs can be well adapted in an appropriate form. 'e adaption is related to the learning capacity since the network can consider and respond to new constraints and data related to the external environment....
According to the requirements of the reconnaissance robot for the ability to adapt to a complex environment and the in-depth study of the obstacle climbing mechanisms, a planetary wheel-leg-combined mechanism capable of adapting to complex terrains is proposed. According to the proposed planetary wheel-leg-combined mechanism, the land part of the air-ground amphibious reconnaissance robot is designed. Considering the obstacle and fast marching performance, four groups of combined wheel-leg mechanisms are adopted in the land bank. Under the action of three kinds of obstacles, the stability and the movement ability of the robot are analyzed by using the static method. The parameter model of the reconnaissance robot is built by a virtual prototype dynamics software MSC.ADMAS. The kinematic characteristic curves of each component and the whole prototype are obtained, which provides a theoretical basis for the design and numerical calculation of the robot structure. Finally, the climbing ability tests of the reconnaissance robot prototype verify the reliability and practicability of the body structure of the reconnaissance robot....
This paper presents an output-based tracking controller for a class of car-like mobile robot (CLMR) subject to slipping and skidding. The slipping and skidding are regarded as external disturbances, and an event-triggered extended state observer (ET-ESO) is utilized to recover the velocities as well as to estimate the uncertainties and disturbances. The constrained longitudinal velocity is established, conforming to the traffic flow theory on the kinematic level. The velocity control law and heading angle control law are developed on the dynamic level, respectively. The input to state stability (ISS) of the closed-loop system is analyzed via cascade theory. Simulation results are given to demonstrate the effectiveness of the proposed tracking controller for CLMR subject to slipping and skidding....
Loading....